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About The Scaling Era

How did we build large language models? How do they 
think, if they think? What will the world look like if we 
have billions of AIs that are as smart as humans, or 
even smarter? In a series of in-depth interviews with 
leading AI researchers and company founders—
including Anthropic CEO Dario Amodei, DeepMind 
cofounder Demis Hassabis, OpenAI cofounder Ilya 
Sutskever, MIRI cofounder Eliezer Yudkowsky, and 
Meta CEO Mark Zuckerberg—Dwarkesh Patel provides 
the first comprehensive and contemporary portrait of 
the technology that is transforming our world. Drawn 
from his interviews on the Dwarkesh Podcast, these 
curated excerpts range from the technical details of 
how LLMs work to the possibility of an AI takeover or 
explosive economic growth. It also includes 170+ 
definitions and visualizations, classic essays on the 
theme, and previously unpublished interviews. The 
Scaling Era offers readers unprecedented insight into  
a transformative moment in the AI’s development—and 
a vision of what comes next.
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PARAMETER
A variable that helps define a system or a 
transformation applied to input data; a dimen-
sion in model space. In machine learning, a 
numerical value that is adjusted iteratively 
during model training to encode patterns 
learned from the data.

��(ARTIFICIAL) NEURAL NETWORK
A type of computer separated into three parts: 
the input layer, where data enters; the hidden 
layers, where most computation occurs; and 
the output layer, where predictions are made. 
Each layer contains many units (10,000, for 
example), interconnected by many weights. 
Unlike traditional computers, neural networks 
can learn programs by automatically adjust-
ing these weights. The concept dates back 
to the 1940s, and was rebranded in the 21st 
century as deep learning.

WEIGHT
A parameter that defines the strength of the 
connection between two units in a neural 
network; where the algorithms performed 
on inputs to produce outputs are defined. 
Metaphorically, weights are like the synaps-
es in the brain.

ACTIVATION
The value a model produces when process-
ing a specific query, which depends on the 
weights it has learned during training and 
the inputs provided by the user; what gets 
input into the next layer of neurons in the 
model. Metaphorically, activations are like 
the electrical and neurotransmitter activity 
in the brain, or the model’s active thoughts, 
associations, and goals.

If you’re new to machine learning, here are 
some key terms you’ll need to know and how 
they fit together.

inference

activations

output
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weights≈model query hyperparameters

pretraining reward model

compute data hyperparameters architecture loss human preferences

Figure 1. A bird’s-eye view of machine learning.
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LEARNING
The process of adjusting weights in a model 
after it processes data, enabling improved 
predictions based on past performance.

ARCHITECTURE
The structure of a model, including how its 
components connect to one another and 
how it is trained. 
 
MODEL
The AI system produced by training an archi-
tecture on data. A program that has learned 
to perform specific tasks.

TRANSFORMER
A modern neural network architecture nota-
ble for its parallel design and ability to learn 
context and relationships using a mechanism 
called self-attention. This attention mecha-
nism dynamically assigns varying importance 
to different parts of the input data.

LARGE LANGUAGE MODEL (LLM) 
A neural network trained on text data to pro-
duce a probabilistic model of language. The 
term has become a misnomer in recent years, 
as LLMs are now also trained on audio, imag-
es, and other modalities, such as amino-acid 
sequences. The leading LLMs are based on 
the Transformer architecture. 
 
TOKEN
The basic unit of data in an LLM, typically 
representing roughly one word. However, 
Transformers can be trained to emit more 
than just text tokens. Models can also out-
put actions (such as searching the web) and 
pixels (as in image generators), among many 
other data types.

PROMPT
The input provided by the user, typically a que-
ry or instruction that the model responds to.
 

PRETRAINING
The process of creating an initial LLM, setting 
the values of its weights. During pretraining, 
the model is exposed to vast amounts of data 
and learns through trial and error by predict-
ing the next token in a document.
��
POST-TRAINING
The process of adapting the pretrained mod-
el to be more of an assistant (instruction tun-
ing), or to make it more professional, to make 
it less toxic, or to satisfy some other criteria 
(reinforcement learning from human prefer-
ences) by training further on data from chat 
sessions or rankings.

LOSS
A measure of how far a prediction is from the 
truth. In LLMs, “loss” is typically shorthand for 
the average autoregressive loss: the average 
error the model makes when predicting the 
next word in previously unseen documents.

��HYPERPARAMETER
A parameter that governs how a model is 
trained or operates. It’s “hyper” because it 
governs the parameters (weights) of the model. 

��FLOATING-POINT NUMBER 
A computer representation of a real number, 
for example 0.00000024361.

FLOATING-POINT OPERATION (FLOP)
An arithmetic operation performed on a float-
ing-point number. Updating a large model on 
a single data point might require billions of 
FLOPs. This measurement is often confused 
with FLOP/S, which measures the rate of float-
ing-point operations per second.

BASE LLM
A model trained on a vast corpus of human 
text (as well as audio and images) in a semi-
supervised manner by predicting the next 
word in a document and being updated in pro-
portion to the magnitude of its error in pre-
dicting the next token. Technically, this refers 
to a pretrained, decoder-only Transformer. 
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INSTRUCTION-TUNED LLM
A base LLM that has been fine-tuned on exam-
ples of chat sessions so that it can respond 
in dialogue form as an assistant.

RLHF’D LLM
An instruction-tuned LLM that has been fur-
ther refined using reinforcement learning from 
human feedback (RLHF). This process involves 
optimizing the model based on a learned rep-
resentation of human preferences to reduce 
harmful, offensive, commercially sensitive, or 
inhuman responses.

SCAFFOLDED LLM
An RLHF’d LLM equipped with tools like chain-
of-thought prompting, web search, vector data-
bases, symbolic solvers, code interpreters, epi-
sodic memory, and search and self-criticism 
over possible responses. Also known as an 
augmented language model. Most systems 
available for public use are scaffolded LLMs.

LLM AGENT
A system that can solve open-ended or long-
horizon tasks that require planning and exe-
cuting sequences of actions and perceptions. 
A simple example is placing an LLM inside a 
prompt loop that continues until the task is 
completed. An LLM agent is sometimes also 
referred to as a scaffolded LLM, confusingly.

ARTIFICIAL GENERAL INTELLIGENCE (AGI)
An AI system capable of performing any task a 
human can perform, any task a group of humans 
can perform, or any task the average human 
can perform. Example tasks are boundless, 
but imagine an AGI and its copies perform-
ing every role in a large corporation, includ-
ing strategy, design, management, produc-
tion, and distribution; performing Nobel-level 
scientific research, including the experiments 
and breakthrough mathematical insights; or 
executing a coup on a major world govern-
ment. The term “AGI” is sometimes used to 
refer specifically to human-level AI, while “ASI” 
(artificial superintelligence) denotes AI sys-
tems that surpass human-level capabilities.

SCALING
Massively increasing a model architecture’s 
size (measured in parameters), the optimiza-
tion used to train it (measured in FLOPs), the 
data used for training it (measured in bytes), 
or the computation required for each query 
(measured in tokens). 

THE SCALING HYPOTHESIS
The idea that increasing the size, training 
data, and computational inputs of LLMs will 
be sufficient to achieve AGI.
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Chapter 1 
Scaling 
 
Why is bigger better?



	� As the rising flood reaches more populated heights, 
machines will begin to do well in areas a greater number 
can appreciate… When the highest peaks are covered, 
there will be machines that can interact as intelligently 
as any human on any subject. The presence of minds 
in machines will then become self-evident.

	 —Hans Moravec, 1997●

	
When OpenAI released GPT-2 in 2019, it was barely dis-
cussed outside of AI circles. Three years later, GPT-3.5 took 
the world by storm, with perhaps the fastest recorded user 
growth of any software in history.● ● 
	 There are a few reasons for this, not least the friendlier 
user interface of ChatGPT. But a key reason is that GPT-3.5 
was much smarter than its predecessors. The main reason 
it got smarter is scaling: The researchers used roughly the 
same design as GPT-2 but created a much larger version 
trained on much more data.● ● ●

	 It’s hard to overstate the magnitudes. The compute 
needed to train a leading model is now 10 billion times 
higher than it was in 2010.19 If the compute used for a 
2010 AI model was the size of a laptop, the compute used 
for Google DeepMind’s Gemini Ultra, released in 2023, 
would be the size of New York City.● ● ● ● In this period, the 
compute used to train each frontier model doubled every 
six months—four times faster than Moore’s law predicts.20

	 OpenAI took a $4 million risk in training GPT-3 because 
it had stumbled upon so-called neural scaling laws: curves 
that predict how much models will improve as we increase 
the resources used to create them.21 So far, these laws 

●	� While Moravec’s predictions were incredibly prescient, he did 
not fully account for the need for huge amounts of training 
data and computational resources. Without the internet, there 
would have been no massive free dataset; without training data, 
there would be no LLMs. 

● ●	� Reportedly, ChatGPT had more than 100 million monthly 
active users within two months of launching. By way of com-
parison, it took TikTok nine months to achieve this milestone. 
Milmo, “ChatGPT Reaches 100 Million Users.” 

● ● ●	� In a 2024 paper, researchers at Epoch AI estimated the 
contribution from scaling data and compute compared to that 
of improving the training algorithm. Their findings suggest that 
two-thirds of the gains come from increasing data and compute. 
Ho et al., “Algorithmic Progress.”

● ● ● ●	� A laptop is approximately 0.09 m2, so 10 billion laptops tiling 
the plane would cover 900 km2. For comparison, New York 
City’s area is 778.2 km2.
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have accurately predicted the improvement resulting from 
exponential increases in investment.● This has inspired 
confidence in $100 million training runs, which would 
otherwise have been perceived as wildly unreasonable 
business risks. The scaling hypothesis is the idea that 
this resource-intensive strategy is all it will take to build a 
human-level AI system, and possibly systems that surpass 
human-level intelligence.● ●

Figure 2. An example of a scaling law. The model improves (that is, its loss de-
creases) smoothly over a 100,000x increase in training compute (measured 
in FLOPs), and this smooth curve remains consistent across a wide range of 
model sizes. Each colored line represents a single model training run; the heat 
map separately encodes the number of parameters in the trained model.22 
Hoffman, “Training Compute-Optimal Large Language Models.”

●	� Though the predictions are vague: “It will get better by this 
much on one general metric (the loss),” not “It will be able to 
prove novel theorems or do this particular thing.” In July 2024, 
on the In Good Company podcast, Anthropic cofounder and 
CEO Dario Amodei said, “Right now, [it costs] $100 million  
[to train a model]. There are models in training today that are 
more like $1 billion. I think [we will get to] $10 or $100 billion… 
in 2025, 2026, maybe 2027.” In the Appendix, you’ll find the 
blogger Nostalgebraist’s account of this predictability revolu-
tion in AI progress. 

● ●	� Note, however, that the term “scaling hypothesis” is used 
inconsistently. The original meaning focused on increasing 
the number of (dense) parameters. Later, the meaning shifted 
to refer to increasing training compute, which reflected the 
amount of human training data used, since data is only used 
once in a training run. As of this writing, the active area being 
scaled is the combined compute used in generating synthetic 
data, pretraining, post-training, and inference. Amodei and 
Hernandez, “AI and Compute”; Branwen, “Scaling Hypothesis.”
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	 More recently, a second form of scaling has emerged: 
inference scaling.● This involves increasing the compute 
used to answer each question by training the model to think 
longer (by using more tokens in its response) or by applying 
explicit algorithms on top of an LLM to explore multiple 
paths.● ● This strategy yields significant improvements on 
tasks that require chains of reasoning. Because inference 
is bottlenecked differently than training,● ● ● and because 
these methods might generate highly useful reasoning 
trace training data, this approach might well drive further 
AI progress.
	 But inference scaling is just an elaboration of the gen-
eral principle: So far, the (exponentially) more compute 
and data you put in, the more intelligence you get out. This 
effect is so clear and so important that I call the period 
since 2016 the scaling era of AI.● ● ● ●

	 In this chapter, we hear from some pioneers of scaling 
about why it works, discuss the evolutionary neurosci-
ence of human and artificial intelligence, and speculate 
about whether scaling will continue to create increasingly 
impressive systems.
 

I.	 	 DWARKESH PATEL

Fundamentally, what is the explanation for why scaling 
works? Why is the universe organized such that if you 
throw big blobs of compute at a wide enough distribution 
of data, the thing becomes intelligent?

TOKEN 
The basic unit of data in an 
LLM, typically representing 
roughly one word. However, 
Transformers can be trained 
to emit more than just text 
tokens. Models can also out-
put actions (such as search-
ing the web) and pixels (as in 
image generators), among 
many other data types.  
 
 
REASONING TRACE 
The text output of a full step-
by-step reasoning process. 
These outputs enable pro-
cess supervision, a training 
method that gives the model 
feedback multiple times per 
response.

●	� Also known as test-time compute scaling.
 
● ●	� There’s a one-to-one ratio between outputting and processing. 

The more tokens output, the more time the model has to think 
about a given query. The simplest approach to letting an LLM 
search is majority voting: Have it generate many completions per 
question (hundreds, for example) and take the most common an-
swer. See Lewkowycz, “Solving Quantitative Reasoning Problems.” 

● ● ●	� For example, inference requires much less RAM, and therefore 
fewer GPUs, than training. It also doesn’t face the same data 
wall (the shortage of new training data) as training. 

● ● ● ●	� We usually think of OpenAI’s billion-parameter GPT-2 model 
from 2019 as the beginning of the scaling era, but it wasn’t the 
first big model. In 2007, researchers trained a limited type of 
language model with 300 billion parameters—roughly the 
same size as GPT-3. And the winners of the 2008 Netflix Prize 
trained 10 billion-parameter models. Researchers at Epoch 
AI used a simple regression to date the year scaling really got 
going and concluded that “a separate trend of models breaks 
off the main trend between 2015 and 2016.” Brants et al., “Large 
Language Models in Machine Translation”; Bell et al., “BellKor 
2008 Solution”; Sevilla et al., “Compute Trends.”
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		  DARIO AMODEI
		  CEO of Anthropic

The truth is that we still don’t know. It’s almost entirely 
just a [contingent] empirical fact. It’s a fact that you could 
sense from the data, but we still don’t have a satisfying 
explanation for it.
	 If I were to try to give one—and I’m just waving my hands 
when I say this—there are these ideas in physics around 
long-tail or power-law correlations or effects. When you 
have a bunch of features, you get a lot of [the total informa-
tion] in the early part of the distribution, before the tails. 
For language, that would be big things like figuring out 
that there are parts of speech or that nouns follow verbs. 
Afterwards, you learn more and more subtle correlations.
	 It makes sense why every order of magnitude added cap-
tures more of the distribution. What’s not clear at all is why 
it scales so smoothly with the number of model parameters, 
and why it scales so smoothly with the amount of data.
 
		  DWARKESH PATEL

By “scaling law,” we’re referring to the fact that when you go 
from Claude 1 to Claude 2, there’s a smooth improvement 
in how well the model predicts the next token. We may 
not know why it’s happening. But can you at least predict 
empirically, here is the loss at which this ability will emerge, 
here is the place where this circuit will emerge? Is that at 
all predictable, or are you just looking at the loss number?●

 

		  DARIO AMODEI

That is much less predictable. What’s predictable is this 
statistical average, this loss, this entropy. It’s sometimes 
predictable even to several significant figures, which you 
don’t see outside of physics. You don’t expect to see it in 
this messy empirical field.
	 Specific abilities are very hard to predict. Back when I 
was working on GPT-2 and GPT-3, we were asking, “When 
does arithmetic come into place? When do models learn 
to code?” Sometimes it’s very abrupt. It’s like how you can 

●	� Here, I’m alluding to the difference between predicting the 
average autoregressive loss after pretraining—how well the 
LLM predicts the next token—and predicting the system’s 
downstream task performance—how well it does on real 
tasks people want it to do, like writing code or doing home-
work—also known as its emergent capabilities. An up-to-date 
discussion is in Schaeffer et al., “Downstream Capabilities  
of Frontier AI Models.”

FEATURE  
A variable used by a model 
to make predictions or deci-
sions; a dimension in the 
space the model thinks in.  
For example, when classify-
ing the species of a flower,  
a useful feature is the width 
of its petals. Traditionally,  
a developer had to do feature 
engineering: handing the 
model features relevant to 
the task. Instead, deep learn-
ing models learn features, 
developing their own repre-
sentations of the important 
parts of the training data.  
In some cases, these fea-
tures reflect recognizable 
concepts, like “straight line” 
or “malevolent AI.”  
 
 
PARAMETER 
A variable that helps define  
a system or a transforma​- 
tion applied to input data;  
a dimension in model space.  
In machine learning, a numer-
ical value that is adjusted  
iteratively during model 
training to encode patterns 
learned from the data. 
 
 
LOSS 
A measure of how far a  
prediction is from the truth. 
In LLMs, “loss” is typically 
shorthand for the average 
autoregressive loss: the aver-
age error the model makes 
when predicting the next 
word in previously unseen 
documents. 
 
 
CIRCUIT 
A collection of neurons  
in a model that form a stable  
pattern of activation in 
response to certain inputs, 
enabling the model to  
perform simple tasks like 
detecting straight lines 
in an image or determin-
ing whether one quantity is 
greater than another. Circuit-
level interpretability would 
represent an understanding 
of every such circuit— 
a complete explanation for 
the LLM’s behavior. It may 
not be possible.
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predict statistical averages of the weather, but the weather 
on one particular day is very hard to predict.
	 One of the first things [OpenAI cofounder and former 
chief scientist] Ilya Sutskever said to me was, “Look. The 
models just want to learn. You have to understand this. 
The models just want to learn.” It was a bit like a Zen koan. 
I listened to this and I became enlightened. 
 

II.	 	 DWARKESH PATEL

Scaling is the main way these models are getting better. 
Why does that work? Why is the universe this way?
 
		  JARED KAPLAN
		  Cofounder of Anthropic

I have a few hypotheses. But maybe first we should talk 
about what scaling is. Scaling is this relation we’ve noticed: 
As you make AI systems larger—increasing the number of 
parameters they have, training on more data, or increas-
ing the total amount of compute used for training—you 
get really, really predictable trends for the performance 
of these systems as you scale up. 
	 This holds true over many, many orders of magnitude. 
Although at first we were only looking at language models 
in the GPT-1, GPT-2 era, it also seems true of multimodal 
models and all sorts of other AI systems. This universality 
is really striking and really important. If you have a phe-
nomenon that only occurs in some really niche situation, 
then maybe there’s a niche explanation for what’s going 
on there. Whereas scaling seems so universal that you’d 
expect there to be some kind of simple general explanation.
	 I can talk a little bit about theories we’ve developed 
to explain this. They’re the kinds of theories physicists 
like—you just have to make the right assumptions and the 
result follows. But we don’t really know all of the details 
of how neural networks work. We’re still very confused. 
There’s a lot left to understand, even to just validate some 
of our hypotheses.
 
		  DWARKESH PATEL

What is that simple explanation? I understand that the full 
theory might not be clear, but what’s the general heuristic?
 
		  JARED KAPLAN

You can think of neural networks as mapping their data to 
some kind of data manifold that has some dimensionality. 
All neural networks are really doing, then, is basically fit-
ting a curve to that data manifold.

MULTIMODAL MODEL 
A model that can simulta-
neously process multiple 
data types (modalities), such 
as text, images, and audio. 
Figuratively, it’s like having 
multiple senses and being 
able to correlate and reason 
about them. 
 
 
ARTIFICIAL NEURAL  
NETWORK 
A type of computer separated 
into three parts: the input 
layer, where data enters; the 
hidden layers, where most 
computation occurs; and the 
output layer, where predic-
tions are made. Each layer 
contains many units (10,000, 
for example), interconnected 
by many weights. Unlike tra-
ditional computers, neural 
networks can learn programs 
by automatically adjusting 
these weights. The concept 
dates back to the 1940s, and 
was rebranded in the 21st 
century as deep learning. 
 
 
DATA MANIFOLD 
A structure representing all 
possible data points, often 
conceptualized as a surface 
with a complex shape in a 
high-dimensional space. 
Notably, “data” manifold is 
a misnomer, as the mani-
fold has a far lower dimen-
sion than the original data. 
The word “surface” is also 
somewhat misleading, as it 
suggests three dimensions, 
whereas the manifold of 
large LLMs is estimated at 
more than 90 dimensions.
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	 This is all very abstract, but probably everyone who’s 
done a little bit of science has done an experiment, gotten 
a bunch of data points on x versus y, and fit some kind of 
curve to that. The idea is that maybe neural networks are 
doing something, abstractly, as simple as fitting some multi-
dimensional curve. In general, what’s the simplest way you 
can fit a curve? You can just chop up your x-axis or your data 
into little bins and then model each bin separately.
		 So if you make that assumption—which is a huge 
assumption; we don’t really know where this data mani-
fold lives or if it really exists—then you can argue that as 

Figure 3. Two ways to fit the same data. On the top is a relatively sophisti-
cated model: a polynomial of degree 3 (that is, it has four parameters).  
On the bottom is a piecewise linear model obtained by binning (splitting) 
the data into intervals of width 2 and fitting a simple line to each bin (using 
10 parameters). As Kaplan notes, the linear models fit the data better. This 
data is just a sine wave with noise; the underlying generator has only three 
parameters. The optimal model for this particular data in terms of both  
accuracy and parameter efficiency is a sine wave, but the piecewise  
approach is applicable to data in general.
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you scale up the number of parameters, all you’re really 
doing is cutting up your data manifold into more and more 
high-resolution pieces. You can then ask, how will the 
error that you get scale as you chop it up into more and 
more pieces? Because we’ve hypothesized that the data 
manifold has some intrinsic dimensionality, you can run 
some numbers and you’ll find that you get a power-law 
scaling in the number of parameters as you scale up.
 

III.		 DWARKESH PATEL

How seriously do you take these scaling laws? There’s a 
paper that says you need such-and-such many more orders 
of magnitude of training compute to get all the reasoning 
out.23 Do you take that seriously, or do you think it breaks 
down at some point?
 
		  ILYA SUTSKEVER
		  Cofounder of Safe Superintelligence Inc.

The thing is, the scaling law tells you what happens to the 
log of your next-word prediction accuracy. There’s a whole 
separate challenge of linking this next-word prediction 
accuracy to actual reasoning capability. I do believe there 
is a link, but it’s complicated. We may find that there are 
other things that can give us more reasoning per unit of 
effort. I think reasoning tokens can be helpful.
 

IV.	 	 DWARKESH PATEL

If the current scale-up works, we’re going to get to AGI really 
fast, like within the next 10 years. If the current scale-up 
doesn’t work, we’re left with the baseline—the economy 
growing at only 2 percent a year, so we have only 2 percent 
more resources a year to spend on AI. You’re talking about 
decades, then, before you can train a $10 trillion model.● 
	 Let’s talk about your thesis that the current AI scale-up 
would work. What’s the evidence from AI itself, or from 
the evolution of primates and other animals? 
 
		  CARL SHULMAN 
		  Independent adviser to Open Philanthropy

The best way to think about this might be: In the 2000s, 
before the deep learning revolution, how did I think about 
AGI timelines? How have I updated since then based on 
what has happened with deep learning?

INTRINSIC DIMENSION 
The minimum number of 
parameters needed to rep-
resent the data as simply as 
possible, or to solve a given 
optimization problem 
 
 
POWER LAW 
A relationship between two 
variables, x and y, where y 
scales as a power of x (y = xk) 
and the relationship stays the 
same at any scale. A simple 
example is the area of a 
square (area = length2). 

●	� OpenAI’s Sam Altman recently estimated that it would take a  
total of $7 trillion to build the necessary new AI compute clusters. 
Carchidi, “Is OpenAI’s Sam Altman’s Future Worth $7 Trillion?”

REASONING TOKEN
1.  �Output: An LLM token that 

uses more test-time com-
pute per query, enabling 
step-by-step reasoning 
through multiple chains of 
thought. The current cen-
tral example is OpenAI’s o1, 
which hides its reasoning 
tokens from users. This 
approach has its own scal-
ing laws with different 
constraints.

2.  �Input and output: Special  
symbols that denote the 
role of the sentence within 
a broader argument. A 
simple example would be 
labeling text with “Prem-
ise:” and “Conclusion:.” 
Hypothetically, more 
sophisticated tokens like 

“<Make a plan>” or “<Go 
back and check your work>” 
could improve LLMs’ rea-
soning. Recent Anthropic 
models are reported to use 
such tokens.

AGI TIMELINE 
A prediction about when AGI 
will arrive, often expressed 
as the first year where there 
is a 50 percent likelihood of 
AGI existing.
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	 Back then I would have said, we know the brain is an 
information-processing device. Human intelligence works. 
Intelligence is possible. Not only is it possible, it was cre-
ated by evolution on Earth. That gives us something of an 
upper bound [on the size of the search necessary to pro-
duce intelligence], in that brute force [that is, evolutionary 
trial and error] was sufficient. 
	 There are some complexities. What if it was a freak 
accident and it didn’t happen on any of the other planets? I 
have a paper with [philosopher] Nick Bostrom about this.24 
Basically, it’s not that important. There’s convergent evolu-
tion. Octopi are also quite sophisticated. If a special event 
was required at the level of forming cells at all, or forming 
brains at all, we get to skip that because we already exist and 
we’re choosing to build computers. We have that advantage. 
So evolution gives something of an upper bound. Really 
intensive, massive brute-force search and things like evo-
lutionary algorithms can produce intelligence.
 
		  DWARKESH PATEL

Isn’t the fact that octopi and other mammals got to the point 
of being pretty intelligent but not human-level intelligent 
evidence that there’s a hard step between a cephalopod 
and a human? 
 
		  CARL SHULMAN 

It doesn’t seem particularly compelling. One source of 
evidence is work by Suzana Herculano-Houzel, a neuro-
scientist who has dissolved the brains of many creatures 
to determine how many neurons are present. She’s found 
a lot of interesting scaling laws. She has a paper discussing 
the human brain as a scaled-up primate brain.25 Across a 
wide variety of animals, mammals in particular, there are 
certain characteristic changes in the number of neurons 
and the size of different brain regions as things scale up. 
There’s a lot of structural similarity. 
	 You can explain a lot of what is different about us with a 
brute-force story. You expend resources on having a bigger 
brain, keeping it in good order, and giving it time to learn. 
We have an unusually long childhood. We spend more com-
pute by having a larger brain than other animals—more 
than three times as large as chimpanzees—and by having 
a longer childhood. We’re spending more compute in a way 
that is analogous to having a bigger model and training it 
for longer.
	 With AI models, we see these large, consistent benefits 
from increasing compute spent in those ways. We see 
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qualitatively new capabilities showing up over and over 
again, particularly in the areas that AI skeptics call out. 
In my experience over the last 15 years, people call out 
things like, “Ah, but the AI can’t do that, and it’s because 
of a fundamental limitation.” We’ve gone through a lot of 
them. There were Winograd schemas, catastrophic for-
getting, quite a number of these, and they have repeatedly 
gone away through scaling.
	 Most creatures wind up with small brains because they 
can save that biological energy and that time to reproduce 
and so on. Humans seem to have wound up in a self-rein-
forcing niche where we greatly increase the returns to hav-
ing large brains. Language and technology are the obvious 
candidates. You have humans around you who know a lot 
of things, and they can teach you. Compared to almost any 
other species, we have vastly more instruction from parents 
and society. You’re getting way more from your brain per 
minute because you can learn a lot more useful skills. You 
can then provide the energy to feed that brain [through 
ingenuity], such as by hunting and gathering, and by hav-
ing fire, which makes digestion easier. 
	 Humans play a lot, and we keep playing as adults, which 
is very weird compared to other animals. We’re more 
motivated to copy those around us than other primates. 
These motivational changes keep more of our attention 
and effort on learning, and that pays off more when you 
have a bigger brain and a longer lifespan in which to learn.
	 A mayfly or a mouse that tried to invest in a giant brain 
and a very long childhood would be quite likely to be killed 
by some predator or some disease before they were able to 
use it. That means you actually have exponentially increas-
ing costs in a given niche. If I have a 50 percent chance of 
dying every few months as a little mammal or lizard, the 
cost of going from three months of learning and child-
hood development to 30 months is not 10x less benefit; it’s 
a 1,024x reduction in the benefit I get from what I learn, 
because 99.9 percent of such animals will have been killed 
before that point.● 
	 We’re in a specific niche. We’re large, long-lived animals 

WINOGRAD SCHEMA 
A type of grammatical puzzle 
that requires common-sense 
reasoning to solve. The  
task involves identifying the 
meaning of a pronoun in a 
sentence with multiple pos-
sible subjects. The canonical 
example, from Terry Winograd,  
is the following pair of con-
trasting sentences:	

A:  �The city councilmen 
refused the demonstrators  
a permit because they 
feared violence.

B:  �The city councilmen 
refused the demonstra-
tors a permit because they 
advocated violence.

In sentence A, “they” refers 
to the councilmen, while in 
B, it refers to the demonstra-
tors. The Winograd Schema 
Challenge, a benchmark for 
this task, was declared solved 
in 2019 after an LLM achieved 
90 percent accuracy. Kocijan 
et al., “Winograd Schema 
Challenge.” 
 
 
CATASTROPHIC  
FORGETTING 
A phenomenon in which an 
AI’s performance declines  
on learned tasks it has 
not interacted with for an 
extended period of time.  
As Shulman mentions, this 
limitation can be overcome.

●	� Shulman obtains this result as follows: If you have a 50 percent 
chance of dying in the next three months and a 50 percent chance 
of dying in the three months after that, your probability of sur-
viving to six months (and, therefore, of reaping the benefits of the 
investment into intelligence) is calculated as 50% × 50% = 25%. 
Over 30 months, the probability is thus 0.510 or 1/1,024,  
so the expected value of investing in your own development  
is reduced accordingly.
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with language and technology, so we can learn a lot from 
our groups. That means it pays off to expand our invest-
ment into intelligence.
 
		  DWARKESH PATEL

Other species also live in flocks or packs. They play with 
each other. Why isn’t that a hill they could have climbed 
to human-level intelligence? If it’s because of something 
like language or technology, humans were getting smarter 
before we got language.● Especially given how valuable it 
is and the fact that we’ve dominated the world as a result, 
there should be other species that had the beginnings of a 
cognitive revolution. You’d think there would be selective 
pressure for it. 
 
		  CARL SHULMAN 

Evolution doesn’t have foresight. What gets more surviv-
ing offspring and grandchildren in this generation is the 
thing that becomes more common. Evolution doesn’t think, 

“If you do this, then in a million years, you’ll have a lot of 
descendants.” It’s about what survives and reproduces now. 
	 In fact, on average, social animals do have larger brains. 
Part of that is probably due to the social applications of 
bigger brains: keeping track of which group members have 
helped you before so that you can reciprocate, or remem-
bering who’s dangerous within the group. So there’s some 
correlation there, but it seems that it’s enough to just invest 
a bit more [in intelligence], but not to the point where a mind 
can easily develop language and technology and pass it on. 
	 You see bits of tool use in some other primates. They 
have an advantage compared to whales, who don’t have 
hands, which rules out a bunch of ways brains can pay off. 
Primates use sticks to extract termites. Capuchin monkeys 
open clams by smashing them with a rock. What they don’t 
have is the ability to sustain culture. Maybe a particular 
primate will discover one of these tactics and it’ll be cop-
ied by their immediate group, but they’re not holding onto 
the tactic that well. It’s easy to forget things, easy to lose 
information. So they remained technologically stagnant 
for hundreds of thousands of years.
	 We can look at some comparable human situations. 
There’s an old paper by [economist] Michael Kremer that 
talks about the technological growth in human societies 

●	� See, for example, what we infer about our distant ancestors’ 
ability to handle figurative grammars. Watson et al.,  

“Nonadjacent Dependency Processing.”
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on different continents.26 Eurasia is the largest integrated 
connected area. Africa is partly connected to it, but the 
Sahara desert restricts the flow of information and tech-
nology. Then you have the Americas, which, after colo-
nization from the land bridge, were largely separated and 
are smaller than Eurasia. Then you have Australia, and 
then smaller islands like Tasmania. The paper finds that 
technological progress seems to have been faster with 
larger, connected groups of people. In the smallest groups, 
like in Tasmania, they actually lost technology, like some 
fishing techniques. 
	 If you have fewer people, there’s less innovation. More-
over, you can easily get an imbalance between the rate at 
which you lose technologies to local disturbances and the 
rate at which you create new technologies. The great change 
brought by hominids and humanity is that we wound up 
accumulating tech faster than we lost it. Accumulating those 
technologies allowed us to expand our population, which 
then reinforced all of this. The tech also created additional 
demand for intelligence, so our brains became three times 
as large as those of chimpanzees and our ancestors.
 
		  DWARKESH PATEL

The crucial point for AI is that the selective pressures 
against intelligence in other animals are not acting against 
neural networks. The model isn’t going to get eaten by a 
predator if it spends too much time becoming more intel-
ligent. Unlike evolution, we’re explicitly training them to 
become more intelligent. So we have a good first-principles 
reason to think that if scaling made our minds this pow-
erful, and if the things that prevented other animals from 
scaling don’t impinge on AI, then AI should just continue 
to become very smart.

 
CARL SHULMAN 

Yeah. We are also growing them in a technological culture, 
with jobs like software engineering, which depend much 
more on cognitive output and less on things like metabolic 
resources devoted to the immune system or big muscles 
to throw spears with.
 

V.	 	 DWARKESH PATEL

[AI researcher] Richard Sutton’s “Bitter Lesson” essay● says 
that there are two things you can scale: search and learn-
ing. LLMs are about the learning aspect. You’ve worked on 
search throughout your career, where you have an agent 
interacting with an environment.● ● Is that the direction 

SEARCH 
An area of computer science 
focused on finding solutions 
that satisfy a given specifi-
cation when no explicit algo-
rithm is known. Many of AI’s 
scientific successes, such as 
protein structure prediction 
and theorem proving, have 
resulted from using deep 
reinforcement learning (non-
LLM neural networks) to solve 
complex search problems. 
 
 
AGENT 
An autonomous system that 
perceives and acts in pursuit 
of a goal; a system capable 
of working out what it needs 
to learn and do in order to 
achieve an objective.
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that needs to be explored again? Or is that something that 
needs to be added to LLMs, so they can interact with their 
data or the world or in some way?
 
		  SHANE LEGG
		  Cofounder and chief AGI scientist at Google DeepMind

Yeah, that’s on the right track. These foundation models are 
world models of a kind, and to do really creative problem 
solving, you need to start searching. Think about something 
like AlphaGo and the famous Move 37. Where did that come 
from? Did it come from data it had seen of human games? No. 
It came from the model identifying a move as being unlikely 
but plausible and then, via a process of search, coming to 
understand that it was actually a very good move.
	 To get real creativity, you need to search through spaces 
of possibilities and find these hidden gems. That’s what 
creativity is. Current language models don’t really do that. 
They’re mimicking the data. They’re mimicking all the 
human ingenuity they’ve seen from all these internet data, 
which are originally derived from humans. 
	 These models can blend things. They can do Harry Potter 
in the style of Kanye West, even though that’s never been 
done before. But a system that goes beyond that—general-
izing in novel ways and doing something truly creative, not 
just blending existing things—requires searching through a 
space of possibilities for these hidden gems. That requires 
search. So I don’t think we’ll see systems that truly step 
beyond their training data until we have powerful search 
in the process.● ● ●

●	�  “The Bitter Lesson” is computer scientist Richard Sutton’s very 
brief summary of 70 years of AI research, published in 2019. 
(It’s included in the Appendix.) He writes that sophisticated 
methods using limited compute will always lose out to “[simple] 
methods that continue to scale with increased computation.” 
To an AI scientist of the old guard, this lesson is bitter because 
it involves relatively little insight, theory, or human interven-
tion. Instead, the improved performance comes from a sheer 
increase in resources. Halevy et al. made much the same point 
in 2009 in “The Unreasonable Effectiveness of Data.”

● ●	� Like AlphaGo’s use of RL policies and tree search.
 
● ● ●	� After this interview, we began to see a trend toward inference 

scaling (also known as test-time compute scaling), effectively 
allowing an LLM search over many possible responses.

WORLD MODEL 
A low-dimensional, stable 
representation of reality that 
captures essential structures  
and relationships, as opposed  
to a complex web of millions 
of statistical associations. 
 
 
ALPHAGO 
DeepMind’s most famous 
game-playing AI and the first 
computer system to surpass 
human-level performance 
at Go.  
 
 
MOVE 37  
An extremely surprising 
move the AlphaGo system 
played against a world-class 
human player. To observers, 
the move initially seemed 
like a bizarre error, but it was 
eventually recognized as part  
of an unprecedented strategy. 
Although they also involve 
neural networks, the Alpha 
systems come from a different  
lineage of AI than LLMs, 
namely reinforcement learn-
ing and tree search. Between 
2010 and 2022, these lineages  
formed DeepMind’s distinc-
tive effort toward AGI.
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VI.		 DWARKESH PATEL

How linked are longer context windows to the ability to do 
long-horizon tasks, ones that require you to engage with 
an assignment for many hours? Or is it unrelated?
 
		  SHOLTO DOUGLAS
		  Reinforcement learning infrastructure lead at Anthropic

I would take issue with the idea that context length is the 
reason that agents haven’t taken off. I think that’s more 
about nines of reliability and the model successfully doing 
composite things. If you can’t chain tasks successively with 
high enough probability, then you won’t get something that 
looks like an agent. GPT-4 or Gemini Ultra-class models 
aren’t enough. But maybe the next increment on model 
scale means that you get that extra nine. Even though the 
loss isn’t going down that dramatically, that small amount 
of extra ability gives you the extra reliability. Obviously, 
you need some amount of context to fit long-horizon tasks, 
but I don’t think that’s been the limiting factor up to now.
	 Over a couple of orders of magnitude, we’ve seen mod-
els go from being unable to do anything to being able to 
do huge amounts. It feels to me that each incremental 
order of magnitude gives more nines of reliability, which 
unlocks things like agents. But at least at the moment, it 
doesn’t feel like reasoning improves linearly but rather 
somewhat sublinearly.
 
		  DWARKESH PATEL

A friend made the point that if you look at new applications 
unlocked by GPT-4 relative to what GPT-3.5 unlocked, 
it’s not clear that it’s that much more impressive. GPT-3.5 
could run Perplexity, or whatever. So if there’s a diminish-
ing increase in capabilities that cost exponentially more, 
that’s actually a bearish sign of what GPT-5 will unlock in 
terms of economic impact. 
 
		  SHOLTO DOUGLAS

For me, the jump between 3.5 and 4 is pretty huge, so 
another jump of that size is ridiculously good, if GPT-5 is 
a 3.5-to-4-sized jump in terms of its ability to do SATs and 
this kind of stuff. It doesn’t feel like we’re going to jump to 
utter genius in the next generation of models. But it does 
feel like we’ll get to very smart models, plus lots of reli-
ability. It’s unclear what that looks like. 
	 I don’t want people to come away thinking that models 
aren’t going to get much better. The jumps we’ve seen so far 
are huge. Even if those continue on a smaller scale, we’re still 

CONTEXT WINDOW 
The space within a model  
for usable information,  
measured in tokens, during  
a single pass. The context 
window includes the develop-
er’s prompt, the user’s input,  
the model’s output, and the 
resulting conversation history.  
Figuratively, it’s like the mod-
el’s working memory. Modern 
context windows can now be 
book-length: 100,000 tokens 
or more. 
 
 
NINES OF RELIABILITY 
A measure of reliability 
expressed as the number  
of nines in an uptime percent-
age. For example, three nines 
represents 99.9 percent  
reliability; six nines indicates 
99.9999 percent reliability. 
The intuition here is that if a 
long-horizon task consists of 
10 subtasks, having one nine 
of reliability at each subtask 
results in a 34 percent suc-
cess rate at the overall task 
(0.910)—effectively useless. 
Having two nines results  
in a 90 percent success rate. 
So small improvements to 
the model could have large 
effects on its ability to  
perform complex tasks. 
 

 
SAMPLE EFFICIENCY  
A measure of how much 
the model’s performance 
improves per training 
example. Here, we’re talk-
ing about the model learning 
tasks it wasn’t necessar-
ily pretrained to perform. 
In-context learning is much 
more sample efficient—the 
model can learn to perform 
complicated tasks like linear 
regression from just a hand-
ful of examples. 
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in for extremely smart, very reliable agents over the next 
couple of orders of magnitude. We have a lot more jumps 
coming. Even if those jumps are smaller, relatively speaking, 
that’s still a pretty stark improvement in capability.
 
		  TRENTON BRICKEN
		  Interpretability researcher at Anthropic

Not only that, but if you believe the claims that GPT-4 has 
around 1 trillion parameters… The human brain has 30 to  
300 trillion synapses. It’s obviously not a 1-to-1 mapping 
between machine parameters and animal synapses, and 
we can debate these numbers, but it seems pretty plausible 
that we’re still below the scale of the human brain.
 
		  DWARKESH PATEL

Crucially, the counterpoint is that the algorithmic over-
head is really high. Even if you can’t keep dumping more 
compute beyond models that cost $1 trillion, the fact that 
the brain is so much more data-efficient implies that if we 
have the compute, and if we have the brain’s algorithm to 
train, and if we could train [a model] as sample efficient 
as humans are from birth, then we could make AGI.
 
		  TRENTON BRICKEN

I never know exactly how to think about the sample effi-
ciency stuff, because a lot of things are hardwired in certain 
ways in humans, like the coevolution of language and the 
brain’s structure. So it’s hard to say. There are also some 
results that indicate that if you make your model bigger, it 
becomes more sample efficient.27

 

VII.	 LEOPOLD ASCHENBRENNER
		  Cofounder of Situational Awareness LP

A key question for AI progress in the next few years is 
how hard it is to unlock the test-time compute overhang. 
Right now, GPT-4 can do a few hundred tokens of chain-
of-thought prompting. That’s already a huge improvement. 
Before, answering a math question was shotgun—and if 
you tried to answer a math question by saying the first 
thing that came to mind, you wouldn’t be very good. GPT-
4 instead thinks for a few hundred tokens. It’s equivalent 
to me thinking for three minutes.
	 Now suppose GPT-4 could think for millions of tokens. 
That’s [10,000x] more test-time compute spent on one 
problem. It can’t do it now. It writes some code and can 
do a little bit of iterative debugging, but it eventually gets 
stuck and can’t correct its errors. There’s a big overhang. 

A STRATEGIC COMPUTE 
OVERHANG is the situation 
where sufficient resources 
are available to run multiple 
instances of a powerful AI as 
soon as one is trained. This is 
one source of AI takeover risk, 
since the sudden availability 
of many AI instances is key  
to many plausible takeover 
scenarios, and because 
acquiring existing compute 
is a relatively fast process, 
meaning that once one AI is 
capable of exfiltrating itself,  
it could rapidly proliferate. 

A TACTICAL COMPUTE 
OVERHANG is when signifi-
cant algorithmic advance-
ments suddenly enable us to 
train AGI on a much smaller 
budget than previous training 
runs required. 

The TEST-TIME COMPUTE 
OVERHANG is Aschen-
brenner’s term for the idea 
that allowing models to think 
longer (that is, expend more 
compute answering a given 
query) could significantly 
improve their performance 
without much further train-
ing. The simplest version of 
this is best-of-n sampling: 
just query the model n times  
and take the best answer.  
A 2024 paper found that in 
small models, more sophisti-
cated allocation of test-time 
compute improves perfor-
mance as much as increas-
ing the models’ parameters 
fourteenfold. The OpenAI o1 
family of models operates 
along these lines, but it likely 
required substantial retrain-
ing with reinforcement learn-
ing to produce its own itera-
tive chain-of-thought skills. 
 
 
CHAIN-OF-THOUGHT 
PROMPTING 
A prompting technique that 
improves a model’s ability 
to reason by making it think 
step by step (that is, gener-
ate intermediate reasoning  
steps). This simple and 
cheap change expands the 
class of problems a trained 
model can handle.
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	 In another area of ML, there’s a great paper on AlphaGo 
that shows you can trade off train-time and test-time com-
pute.28 If you use four orders of magnitude (OOM) more 
test-time compute, that’s almost like a 3.5x OOM bigger 
model. A few million tokens might be a few months of 
human working time. There’s a lot more you can do in a 
few months of working time than just getting an answer 
right now. How hard is it to unlock that?
	 The reason it might not be that hard is that there are 
only a few extra tokens to learn to use. You need to learn 
things like error-correction tokens: “Ah, I made a mistake, 
let me think about that again.” You need to learn planning 
tokens: “I’m going to start by making a plan. I’m going to 
write a draft, and now I’m going to critique my draft and 
think about it.” These aren’t things the models can do 
now,● but the question is, how hard is it to get there?
	 There are two paths to agents. When Sholto Douglas was 
on your podcast, he talked about scaling leading to more 
nines of reliability. That’s one path. The other path is the 
unhobbling path. The model needs to learn this System 2  
process I described earlier. If it can learn that, it can use 
millions of tokens per query and think coherently.
	 Here’s an analogy. When you drive, you’re on autopilot 
most of the time. Sometimes you hit a construction zone 
or an intersection. Sometimes my girlfriend is in the pas-
senger seat and I’m like, “Ah, be quiet for a moment, I need 
to figure out what’s going on.” You go from autopilot to 
System 2. Scaling improves that System 1 autopilot. The 
brute-force way to get to agents is improving that system. 
But if, instead, you can get a System 2 working, you can 
quickly jump to something more agentified, and test-time 
compute overhang is unlocked.
 
		  DWARKESH PATEL

Is there some loss function that easily enables System 2  
thinking? There aren’t many animals with System 2 think-
ing. It took a long time for evolution to give it to us. Pre-
training uses trillions of tokens of internet text and gets 
you all of these capabilities, but not much of a System 2. 
What’s the reason to think this will be an easy unhobbling?

 
		

●	� True at the time of the interview, but OpenAI’s o1 model, 
released in September 2024, supports the general claim that 
LLMs will be able to search and perform chain-of-thought 
reasoning independently.

UNHOBBLING 
A term coined by Aschen-
brenner to describe tech-
niques that make an LLM 
more consistent, autono-
mous, and strategic. These 
include chain-of-thought 
prompting, RLHF, and the use 
of scaffolds like calculators 
and search engines—essen-
tially, any method other than 
scaling. Another word for  
it is schlep. 
 
 
SYSTEM 2 THINKING 
A mode of explicit, effortful,  
and sequential reasoning, 
exemplified by activities like 
mathematical derivation. It 
contrasts with System 1 think-
ing, which is fast, automatic, 
and intuitive. The terms origi-
nate from Keith Stanovich 
and Richard West’s theory of 
human reasoning. Instilling 
System 2 thinking in an LLM 
might be as simple as having 
it learn a new higher-order 
algorithm using its existing  
representations. A 2024 
paper by Piantadosi et al. 
summarizing decades of evi-
dence suggests that human 
concepts and reasoning are 
also vector-based, just like  
a neural network. 
 
 
LOSS FUNCTION 
A mathematical expression 
that specifies the quality 
of a prediction or decision, 
defining the training objec-
tive of an AI system. During 
pretraining, the loss function 
guides how LLMs are trained 
to produce more accurate 
predictions. Post-training  
is guided by different losses, 
such as human prefer-
ences or predicted human 
preferences.
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		  LEOPOLD ASCHENBRENNER

First of all, pretraining is magical. It gave us a huge advan-
tage for models of general intelligence because you can 
predict the next token. However, there’s a common mis-
conception. Predicting the next token lets the model learn 
incredibly rich representations. Representation learning 
is the magic of deep learning. Rather than just learning 
statistical artifacts, the models learn models of the world. 
That’s why they can generalize, because they learned the 
right representations.
	 When you pretrain a model, you get this raw bundle of 
capabilities. That’s useful. The unhobbling from GPT-2 to 
GPT-4 took this raw mass and RLHF’d it into a good chat-
bot. That was a huge win. Look at the original InstructGPT 
paper.29 When comparing RLHF versus non-RLHF models, 
RLHF is equivalent to increasing the model size 100 times 
in terms of the resulting increase in human evaluators’ 
preference ratings. InstructGPT also started to do simple 
chain of thought. You still have the advantage of all these 
raw capabilities, and there’s still a huge amount you’re not 
doing with them.
	 This pretraining advantage is also the difference between 
LLMs and robotics. People used to say the slow progress in 
robotics was a hardware problem. The hardware issue is 
getting solved, but you still don’t have this huge advantage 
of bootstrapping with pretraining. You don’t have all this 
unsupervised learning you can do. You have to start right 
away with RL self-play.
	 The question is why RL and unhobbling might work. 
Bootstrapping is an advantage. You [as a human] are not 
being pretrained anymore. You were pretrained in grade 
school and high school. At some point, you transition to 
being able to learn by yourself. You weren’t able to do it in 
elementary school. High school is probably where it started. 
By college, if you’re smart, you can teach yourself. Models 
are just starting to enter that regime.
	 This requires a little bit more scaling, and then you 
figure out what goes on top. It won’t be trivial. A lot of 
deep learning seems obvious in retrospect. There’s some 
obvious cluster of ideas. There are some ideas that seem a 
little dumb but work. There are a lot of details you have to 
get right. We’re not going to get this next month. It’ll take 
a while to figure out.
 
		  DWARKESH PATEL

For you, a while is, like, half a year.
 

REINFORCEMENT  
LEARNING FROM HUMAN 
FEEDBACK (RLHF) 
An LLM post-training tech-
nique that uses a proxy for 
human preferences to guide 
the model toward producing 
more human-like and socially 
desirable outputs. Originally 
developed as an AI alignment 
technique, RLHF has also 
been crucial to making LLMs 
more capable and commer-
cially viable. 
 
 
BOOTSTRAPPING 
A form of self-supervised 
learning; training a language 
model on raw data without 
requiring a human to pro-
vide tags or answers. This 
increases the amount of 
available training data by a 
factor of millions. There is 
currently no full equivalent 
of this for robotics, although 
some exciting work uses  
a pretrained LLM to help  
a robot plan the necessary 
sequence of actions. 
 
 
SELF-PLAY  
A training method in which 
an AI system is trained on 
data generated by a copy of 
the system (also known as 
synthetic data). This approach 
offers two key advantages:  
it provides virtually unlimited 
training data at a lower cost, 
and it naturally scales in dif-
ficulty as the system improves, 
because the improved system 
can be swapped in as the data 
generator. So far, however, 
self-play has only been effec-
tive for so-called closed-world 
problems, such as games. 
 
 
DATA WALL  
(or DATA BOTTLENECK)  
A looming challenge for train-
ing better LLMs posed by the 
need for more high-quality 
data. Since models like GPT-4 
were likely trained on much 
of the material available on 
the internet, the low-hanging-
fruit—trillions of tokens of free, 
human-generated content 
online—is sometimes thought 
to be exhausted. However, 
most of the people inter-
viewed in this book disagree. 
Notably, Meta’s Llama 3.1 
model used some amount  
of synthetic data.
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		  LEOPOLD ASCHENBRENNER

Between six months and three years. But it’s possible. It’s 
also very related to the data wall issue.
	 Pretraining is kind of like the teacher lecturing to you. 
The words are flying by. You’re just getting a little bit from it. 
That’s not what you do when you learn by yourself. When 
you learn by yourself—say, you’re reading a dense math 
textbook—you’re not just skimming through it once. You 
read a page, think about it, have some internal monologue 
going on, and have a conversation with a study buddy. You 
try a practice problem and fail a bunch of times. At some 
point it clicks and you’re like, “This made sense.” Then 
you read a few more pages.
	 We’ve bootstrapped our way to just starting to be able 
to do that with models. The question is, can you use all 
this self-play, synthetic data, and RL to make that thing 
work? Right now, there’s in-context learning, which is 
super sample efficient. Gemini just learns a language in 
context.30 Pretraining, on the other hand, is not at all 
sample efficient.
	 What humans do is a kind of in-context learning. You 
try a practice problem, fail, and at some point you figure 
it out in a way that makes sense to you. That’s the best 
possible data for you because it’s the way you would have 
solved the problem, rather than reading how somebody 
else solved the problem, which doesn’t initially click.
 
		  DWARKESH PATEL

Suppose this is the way things go, and we get these unhob-
blings…
 
		  LEOPOLD ASCHENBRENNER

And scaling. Scaling provides this baseline enormous force 
of improvement. GPT-2 was amazing [for its time]. It could 
string together plausible sentences, but it could barely do 
anything. It was kind of like a preschooler. GPT-4, on the 
other hand, could write code and do hard math, like a smart 
high schooler. This big jump in capability is explored in my 
essay series.31 I count the orders of magnitude of compute 
and algorithmic progress.
	 Scaling alone, by 2027 or 2028, is going to do another 
preschool-to-high-school-sized jump on top of GPT-4. 
At a per-token level, the models will be incredibly smart. 
They’ll gain more reliability. With unhobblings, they’ll look 
less like chatbots and more like agents or drop-in remote 
workers.● That’s when things really get going.

SYNTHETIC DATA  
Training examples generated 
by computer programs or 
AIs instead of humans. Use 
of synthetic data is standard 
practice in science, where  
it is called simulation. In AI, 
synthetic data has struggled 
to capture the tails—rare but 
crucial thoughts that humans 
can generate easily. One 
exception is when the ground 
truth is known or verifiable, 
as in the case of games and 
mathematics. However, labs 
have made progress on data  
synthesis, and training on 
some synthetic data is now 
helpful and standard. A 
reported 20 percent of the 
training data for the Hunyuan-
Large model was synthetic. 
 
 
IN-CONTEXT  
LEARNING (ICL)  
The ability of a model to learn 
or improve on tasks using the 
instructions and examples 
provided in the prompt,  
without requiring any further 
gradient updates. Sufficiently 
large models can perform 
this type of dynamic learning  
within their activations. ICL  
is essentially a learning  
algorithm inside of the learn-
ing algorithm—meta-learning. 
The simplest version of this, 
where a user gives the model 
examples of the task, is called 
few-shot prompting. 
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VIII.	 DWARKESH PATEL

How do you make sense of the fact that when you give 
LLMs a lot of data in any specific domain, they tend to get 
better in just that domain? Wouldn’t we expect a general 
improvement across all of the different areas?
 
		  DEMIS HASSABIS
		  Cofounder and CEO of Google DeepMind

You do sometimes get surprising improvement in other 
domains. For example, when these large models improve 
at coding, that can actually improve their general reason-
ing.32 There is evidence of some transfer, although we 
would like a lot more evidence of that. But that’s how the 
human brain learns, too. If we experience and practice 
a lot of things, like chess, creative writing, et cetera, we 
also tend to specialize and get better at that specific thing, 
even though we’re using general learning techniques and 
systems in order to get better in that domain.● ●

 
		  DWARKESH PATEL

As somebody who’s been in this field for a long time and 
seen different trends come and go, what do you think the 
strong version of the scaling hypothesis gets right? What 
does it get wrong?
 
		  DEMIS HASSABIS

This is an empirical question right now. It was pretty 
surprising to almost everyone, including the people who 
first worked on the hypothesis, how far we’ve gotten. The 
models clearly have some form of concepts and abstrac-
tion. Five years ago, I would have said that we needed an 
additional algorithmic breakthrough to get that—maybe 
one more like how the brain works. I think that’s still true 
if we want explicit abstract concepts, neat concepts, but it 
seems that these systems can already implicitly learn them. 
	 We’ve got to push scaling as hard as we can. It’s an 
empirical question whether we will hit a brick wall. No one 
knows. In the meantime, we should also double down on 
innovation. You can think of half of our effort as having 
to do with scaling. The other half has to do with inventing 
the next architectures and algorithms that will be needed, 

TRANSFER 
The ability to apply acquired 
knowledge effectively in dif-
ferent contexts, particularly 
to solve real-world problems 
beyond the original learning 
environment. 
 
 
 

●	� That is, a substitute for a human performing a laptop job 
remotely from home.

● ●	� Psychologists call improving in general by training in specific 
far transfer. It’s the holy grail of education, in the sense that it is 
elusive. Niplav, “Transfer Learning in Humans.”

STRONG SCALING  
HYPOTHESIS  
A current prevailing hypoth-
esis in AI that holds that LLMs 
can achieve human-level 
intelligence with sufficient 
data and compute, with costs 
potentially in the range of  
trillions of dollars. 
 
 

ARCHITECTURE  
The structure of a model, 
including how its components  
connect to one another and 
how it is trained. As of this 
writing, leading model archi-
tectures are still designed  
by humans. 
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knowing that larger and larger scaled models are coming 
down the line. My bet is that you need both.
	 I also think it’s interesting and unexpected that these 
systems have some sort of grounding, even though they 
don’t experience the world multimodally. I think we get 
some grounding through the RLHF feedback systems, 
because the human raters are, by definition, grounded, 
so their feedback is grounded too. Also, maybe language 
contains more grounding than we previously thought.
 
		  DWARKESH PATEL

Two things might change that would make grounding more 
difficult. One is that as these models get smarter, they’re 
going to be able to operate in domains where we just can’t 
generate enough human labels because we’re not smart 
enough. If the model makes a million-line pull request, for 
example, how do we tell it whether this is within the con-
straints of our morality and the end goal we wanted or not?
	 The other thing has to do with what you were saying 
about compute. So far, we’ve been doing next-token pre-
diction, and in some sense, that’s a guardrail. You have to 
talk as a human would talk, and maybe think as a human 
would think. Now, additional compute might be spent on 
reinforcement learning, which just somehow gets to the 
objective. We can’t really trace how it got there. When you 
combine those two, how worried are you that the ground-
ing goes away?
 
		  DEMIS HASSABIS

You have to have some grounding for a system to achieve 
goals in the real world. But these systems are becoming 
more multimodal [as of February 2024], ingesting things 
like video and audiovisual data as well as text data. The 
system correlates those things together. That is a form  
of proper grounding. So I do think our systems are going 
to start to understand the physics of the real world better.
 

IX.		 TRENTON BRICKEN

Machine learning research is just so empirical. This is 
honestly one reason why I think our solutions might end 
up looking more brain-like than otherwise. Even though 
we wouldn’t want to admit it, the whole community is 
doing a kind of greedy evolutionary optimization over 
the landscape of possible AI architectures. It’s no better 
than evolution.
 

SYMBOL GROUNDING 
PROBLEM  
A fundamental require-
ment and challenge for any 
general AI system: the abil-
ity to translate between 
sensory data and abstract 
representations (for example, 
between a set of written or 
spoken instructions and the 
corresponding objects and 
sequences of actions in the 
real world). To be effective, 
the system must ground 
symbols in the appropriate  
real-world objects or 
events. Hassabis is, in my 
view, correct that this prob-
lem has more or less been 
sidestepped. For example, 
OpenAI’s 2021 CLIP system 
learned how to translate 
between images and text 
descriptions. 
 
 
LABEL  
In supervised learning,  
a label is the correct or 
desired answer, which is 
applied to each input in the 
training data. It is used to 
guide the model’s learning 
process. Here, I’m referring 
to the notion that at some 
point humans won’t be able 
to produce useful labels 
because we won’t be able  
to understand the outputs  
of superhuman models.
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X.	 	 DWARKESH PATEL

You’re one of the only people outside of OpenAI who noticed 
the way AI was progressing in 2020, and you’re maybe the 
only one who had a detailed model of scaling. What sort of 
process made you able to develop this model of what was 
happening with LLMs in your “Scaling Hypothesis” post? ●

 
		  GWERN BRANWEN
		  Freelance writer and researcher

I was just a patient reader of everything, noting anomalies 
and then going back once in a while and checking again. 
	 If I had to give an intellectual history, it would start in 
the mid-2000s, when I was reading [computer scientists 
Hans] Moravec and [Ray] Kurzweil. They were making 
the fundamental connectionist argument that getting 
enough computing power will result in a neural network 
that matches the human brain, and that until that comput-
ing power is available, trying to build AI is basically futile.
	 I found this argument very unlikely. It’s very much a 

“build it and they will come” view of progress, which I did not 
think was correct. I thought it was ludicrous to suggest that 
simply because there’s some supercomputer that matches 
the human brain in compute, that would summon the cor-
rect algorithm out of nonexistence. I thought, “You can’t 
just buy a bunch of computers and expect to get an AI out. 
That’s magical thinking.” So, because I was super skeptical 
of the argument, I didn’t pay too much attention to it. 
	 But as part of my interest in transhumanism and AI 
risk, I was paying close attention to Shane Legg’s blog 
posts, where he extrapolates the connectionist argument 
out with updated numbers, giving very precise predictions, 
like, “We’re going to get the first general assistant around 
2019, and then around 2025 we’ll get agents and generalist 
capabilities, and by 2030 we should have AGI.” I was, again, 
very skeptical. But along the way, [the semantic network] 
DanNet and [the image classification model] AlexNet came 
out—a very impressive success story of connectionism.33 I 
thought, “Is it an isolated success story, or is it what Kurz-
weil and Moravec and Legg were predicting?” I started 
thinking that maybe scaling was not quite as stupid as I’d 
first thought.
	 It was this gradual trickle of drops hitting me as I went 
along. The dataset sizes kept getting bigger. The models 
kept getting bigger. The training runs crept up from using 

CONNECTIONISM 
A school of thought in cog-
nitive science and AI that 
seeks to explain cognition 
in terms of neural networks. 
By the 2000s, the decades-
long philosophical debate 
between the connection-
ists and the symbolists had 
largely subsided, just in  
time for deep learning to 
vindicate the connectionist 
argument. See, for example, 
Hans Moravec’s “When Will 
Computer Hardware Match 
the Human Brain?” and  
Ray Kurzweil’s The Age of 
Spiritual Machines.

●	� Excerpted in the Appendix.
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one cheap consumer GPU to two, and then to training 
on eight. The system’s abilities kept getting broader and 
broader. Every few weeks, every few months, another drop. 
Finally, I went, “Maybe intelligence really is just a lot of 
compute applied to a lot of data. Huh. If that was true, it 
would have a lot of implications.”
	 So there was no real eureka moment. I was just continu-
ally watching this trend that no one else seemed to see, 
except a handful of people like Ilya Sutskever or [computer 
scientist] Jürgen Schmidhuber. I just paid attention, notic-
ing that the world looked more like [the connectionists’] 
world than like my world, where algorithms are super 
important and you need deep insight.
	 Then GPT-1 comes out. I was like, “Wow, this unsuper-
vised sentiment neuron is learning on its own. That’s pretty 
amazing.” And then GPT-2 came out, and I was like, “Holy 
shit!” I looked at the prompting and the summarization, 
like, “Do we live in their world? Can we just keep scaling 
Transformers?”
	 Then GPT-3 comes down—the crucial test. Going from 
GPT-2 to GPT-3 is one of the biggest scale-ups in all of neu-
ral network history. If scaling was bogus, then the GPT-3 
paper would be super unimpressive. Whereas if scaling was 
true, you would automatically get much more impressive 
results than GPT-2, guaranteed. I opened up the second 
page [of the paper] and I saw the few-shot learning chart, 
and I’m like, “Holy shit, we live in the scaling world. Legg 
and Moravec and Kurzweil were right!” 
	 And then I turned to Twitter, and everyone else was 
like, “This shows scaling doesn’t work! Why is GPT-3 not 
state of the art at everything?”34 I was so angry at them 
that I had to write all this up.35

 
		  DWARKESH PATEL

In 2020, AI was already a thing. People were writing best-
selling books about it. But none of those books were about 
scaling. What were people failing to account for?
 
		  GWERN BRANWEN

For the most part, they were suffering from two issues. First, 
they had not paid attention to all of the scaling results before 
2020. They had not appreciated the fact that AlphaZero 
was discovered in part by doing Bayesian optimization on 
the hyperparameters and noticing that you can get rid of 
more and more of the tree search and get a better model. 
That was a critical insight that could only have been gained 
by having so much compute that you could train many, 

TRANSFORMER 
A modern neural network 
architecture notable for its 
parallel design and ability  
to learn context and relation-
ships using a mechanism 
called self-attention. This 
attention mechanism dynam-
ically assigns varying impor-
tance to different parts of  
the input data. 
 
 
ALPHAZERO 
Another game-playing AI 
developed by DeepMind that 
superseded AlphaGo. Unlike 
its predecessor, its training 
was pure self-play, using  
no human data. The system 
was also able to learn mul-
tiple games. 
 
 
BAYESIAN OPTIMIZATION 
A method of searching a 
space that is expensive to 
sample, such as the space 
of possible hyperparameter 
settings for a training run. 
Roughly, this involves creat-
ing a second model to predict 
how good a given setting  
will be, using this proxy to 
decide which settings to  
try next, and updating the 
model based on how good 
the setting actually was. 
 
 
HYPERPARAMETER 
A parameter that governs 
how a model is trained 
or operates. It’s “hyper” 
because it governs the 
parameters (weights)  
of the model. 
 
 
MONTE CARLO  
TREE SEARCH  
A method for identifying  
an appropriate sequence of 
actions by searching over  
an abstract decision tree.  
As an example, a game of 
chess can be represented  
as a branching tree of all  
possible sequences of moves. 
It is a powerful instance of 
symbolic AI, a rival of statis-
tical machine learning that 
uses rules, logic, human 
representations, and explicit 
algorithms.
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many versions and see the difference. And they simply did 
not know about the 2017 Baidu paper on scaling laws.36 It 
should have been the paper of the year, but it didn’t have 
any immediate impact. People were too busy discussing 
Transformers or AlphaZero.
	 Another issue is that they made the basic error I had 
made, thinking that algorithms are more important than 
compute. That’s partly due to a systematic falsification 
of the actual origins of ideas in the research literature. 
Papers do not tell you where ideas come from; they just 
tell you a nice-sounding story about how something was 
discovered.37 So even if you appreciate the role of trial 
and error and compute in your own experiments, you 
probably think, “I got lucky. Over in the next lab, they do 
things with the power of thought and deep insight.” But 
it turns out that everywhere you go, compute, trial and 
error, and serendipity play enormous roles in how things 
actually happen.
	 Once you understand that, you understand why com-
pute comes first. You can’t do trial and error or serendipity 
at scale without it. You can write down all these beautiful 
ideas but you can’t test them, or you can only test a few 
instances of it, so you typically find that it doesn’t work, 
and you give up and do something else. Reading the old 
deep learning literature, you see all sorts of ideas that 
were completely correct but that no one could prove, like 
ResNets being first published way back in 1988 instead of 
2015. The researchers didn’t have the compute to train a 
version that would have worked. 
	 Why believe that scaling was not going to work? Because 
you didn’t notice the results that were key in retrospect. 
Another was BigGAN scaling to 300 million images.38 
There are still people today who will tell you with a 
straight face that GANs cannot scale past millions of 
images. If you don’t know [otherwise], you could easily 
think, “GANs are broken. [We need a better algorithm.]” 
But if you do know that, then you think to yourself, “How 
can algorithms be so important when all these different 
generative architectures work, as long as you have lots 
and lots of GPUs?”
	 That’s the common ingredient: lots and lots of GPUs. 
That’s probably the root cause of not seeing scaling as a 
coherent paradigm and always [underrating it]. Even in 
2020, you would still have AI people saying, “We’ll get 
AGI in 2050.” You could still think, very reasonably, that 
we still need lots and lots more incredible algorithmic 
breakthroughs [before we get AGI].

RESNET 
Residual neural network.  
An important precursor to the  
Transformer architecture that 
uses residual connections 
between units (also known  
as skip connections) to let 
information flow between 
nonconsecutive layers.
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XI.		 DWARKESH PATEL

Regarding your original point about LLMs needing episodic 
memory, you mentioned that these are problems that we 
can solve, not fundamental impediments. When you say 
that, do you think they will be solved through scaling, or 
do each of these require a specific fine-grained architec-
tural solution? 
 
		  SHANE LEGG

I think it’ll be architectural, because current architectures 
don’t really have what you need. They basically have a 
context window, which is very fluid, and they have weights, 
which [knowledge] gets baked into very slowly. To my mind, 
the model’s activations are like working memory in your 
brain, and the weights are like the synapses in your cortex.
	 Now, the brain separates these things out. It has a sepa-
rate mechanism for rapidly learning specific information. 
That’s a different type of optimization problem compared 
to slowly learning deep generalities.39 There’s a tension 
between the two. But you want both. You want to be able 
to hear someone’s name and remember it the next day. You 
also want to be able to integrate information over a lifetime 
to see deeper patterns in the world. 
	 These are quite different optimization targets, different 
processes, but a comprehensive system should be able to 
do both. So it’s conceivable that you could build one sys-
tem that does both. You can also see that because they’re 
quite different things, it makes sense for them to be done 
differently. I think that’s why the brain does it separately. 
 

XII.	 DWARKESH PATEL

A big open question is whether reinforcement learning 
will allow these models to use self-play or synthetic data 
to get over data bottlenecks. It sounds like you’re optimis-
tic about this.
 
		  DEMIS HASSABIS

I’m very optimistic. First of all, there’s still a lot more data 
that can be used, especially if one considers multimodal 
data. Obviously, society is adding more data to the internet 
all the time. There’s a lot of scope for creating synthetic 
data. We’re looking at that in different ways, partly through 
simulation—for example, using very realistic game envi-
ronments to generate realistic data—but also through 
self-play. That’s where systems interact with each other 
or converse with each other. It worked very well for us 
with AlphaGo and AlphaZero. We got the systems to play 

ACTIVATION 
The value a model produces 
when processing a specific 
query, which depends on the 
weights it has learned during 
training and the inputs pro-
vided by the user; what gets 
input into the next layer of 
neurons in the model. Meta-
phorically, activations are 
like the electrical and neu-
rotransmitter activity in the 
brain, or the model’s active 
thoughts, associations,  
and goals. 
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against each other, learn from each other’s mistakes, and 
build up a knowledge base that way. There are some good 
analogies for that. It’s a little bit more complicated to build 
a general kind of world data.

		  DWARKESH PATEL

How do you get to the point where the synthetic data 
the models are outputting on self-play is not just more of 
what’s already in their dataset but something they haven’t 
seen before? Something that would actually improve 
their abilities.
 
		  DEMIS HASSABIS

There’s a whole new science needed there. This is important 
for things like fairness and trying to remove bias from the 
system and making sure that the dataset is representative 
of the distribution you’re trying to learn. We’re still in the 
nascent stage of [optimal] data curation and data analysis 
and analyzing the holes in our data distribution. There are 
many tricks one can use, like overweighting or replaying 
certain parts of the data. Or, if you identify some gap in your 
dataset, that’s where you put synthetic generation to work.
 

XIII.	 DWARKESH PATEL

What should we make of the fact that these models require 
so much training and the entire corpus of internet data in 
order to become merely subhuman? Should we be worried 
about how inefficient these models seem to be?
 
		  DARIO AMODEI

That’s one of the remaining mysteries. One way you could 
phrase it is that the models are maybe two to three orders of 
magnitude [100x to 1,000x] smaller than the human brain, 
while at the same time being trained on three to four orders 
of magnitude [1,000x to 10,000x] more data. Compare the 
number of words a human sees as it’s developing until age 
18. I think it’s in the hundreds of millions.40 Whereas for 
the models, we’re talking about trillions. 
	 What explains this? The models are smaller than brains, 
so they need a lot more data.● Or perhaps the analogy to 
the brain is not quite right or is breaking down. There’s 
some missing factor. This is just like in physics, when we 

●	� A lesser-known scaling law is that larger models are actually 
more sample efficient—they learn more from each data point 
than smaller models. See Kaplan et al., “Scaling Laws.”  
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couldn’t explain the Michelson-Morley experiment● or one 
of the other 19th-century physics paradoxes. It’s something 
we don’t quite understand. Humans see so little data and 
they still do fine.
	 One theory could be that it’s our other modalities that 
do it. How do we get 1014 bits into the human brain? Maybe 
most of it is images.● ● Maybe a lot of what’s going on inside 
the human brain is that our mental workspace involves 
simulated images, or something like that.
	 Honestly, we have to admit it’s weird. It doesn’t match up. 
This is one reason I’m a bit skeptical of biological analogies. 
I thought in those terms five or six years ago. Now that we 
have these models in front of us, it feels like the evidence 
from these analogies has been screened off by what we’ve 
actually seen. What we’ve seen are models that are much 
smaller than the human brain, and yet they can do a lot of 
the things that humans can do. And yet, paradoxically, they 
require a lot more data to do those things. 
	 Maybe we’ll discover something that makes it all effi-
cient. Maybe we’ll understand why the discrepancy is 
present. At the end of the day, I don’t think it matters if 
we keep scaling the way we are. What’s more relevant at 
this point is just measuring the abilities of the model and 
seeing how far they are from humans’ abilities. They don’t 
seem terribly far to me.

●	� A crucial 1887 experiment that disproved the aether theory  
of light propagation, paving the way for the discovery of  
special relativity.

● ●	� Here’s a rough comparison: The eyes receive around 10 million 
bits of information per second. An ordinary person can read 
five words per second, which, in English, is about 50 bits per 
second—thousands of times slower. Spoken language tends 
to be about 39 bits per second. The skin is another high-band-
width channel, processing perhaps 1 million bits per second, 
though it still doesn’t approach the optic information rate.  
One caveat is that most optic information doesn’t reach the 
brain. Markowsky, “Information Theory”; Coupé et al.,  

“Different Languages, Similar Encoding Efficiency”; Koch et al., 
“How Much the Eye Tells the Brain.”
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